skip to main content


Search for: All records

Creators/Authors contains: "Buchwal, Agata"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tundra shrubs reflect climate sensitivities in their growth-ring widths, yet tissue-specific shrub chronologies are poorly studied. Further, the relative importance of regional climate patterns that exert mesoscale precipitation and temperature influences on tundra shrub growth has been explored in only a few Arctic locations. Here, we investigateBetula nanagrowth-ring chronologies from adjacent dry heath and moist tussock tundra habitats in arctic Alaska in relation to local and regional climate. Mean shrub and five tissue-specific ring width chronologies were analyzed using serial sectioning of above- and below-ground shrub organs, resulting in 30 shrubs per site with 161 and 104 cross sections from dry and moist tundra, respectively.Betula nanagrowth-ring widths in both habitats were primarily related to June air temperature (1989–2014). The strongest relationships with air temperature were found for ‘Branch2’ chronologies (dry site:r = 0.78, June 16, DOY = 167; moist site:r = 0.75, June 9, DOY = 160). Additionally, below-ground chronologies (‘Root’ and ‘Root2’) from the moist site were positively correlated with daily mean air temperatures in the previous late-June (‘Root2’ chronology:r = 0.57, pDOY = 173). Most tissue-specific chronologies exhibited the strongest correlations with daily mean air temperature during the period between 8 and 20 June. Structural equation modeling indicated that shrub growth is indirectly linked to regional Arctic and Pacific Decadal Oscillation (AO and PDO) climate indices through their relation to summer sea ice extent and air temperature. Strong dependence ofBetula nanagrowth on early growing season temperature indicates a highly coordinated allocation of resources to tissue growth, which might increase its competitive advantage over other shrub species under a rapidly changing Arctic climate.

     
    more » « less
  2. Abstract

    The Arctic is rapidly warming, and tundra vegetation community composition is changing from small, prostrate shrubs to taller, erect shrubs in some locations. Across much of the Arctic, the sensitivity of shrub secondary growth, as measured by growth ring width, to climate has changed with increased warming, but it is not fully understood how shrub age contributes to shifts in climate sensitivity.

    We studied Siberian alder,Alnus viridisssp.fruticosa, a large nitrogen‐fixing shrub that has responded to climate warming with northward range expansion over the last 50 years. We used serial sectioning of 26 individual shrubs and 94 cross‐sections to generate a 98‐year growth ring chronology, including one 142‐year‐old, Siberian alder in Northern Alaska. We tested how secondary growth sensitivity to climate has changed over the past century (1920–2017) and how shrub age affects climate sensitivity of alder growth through time.

    We found that over time, alder growth as expressed by the stand chronology became more sensitive to July mean monthly air temperature. Older shrubs displayed higher sensitivity to June and July temperature than younger alders. However, during the first 30 years of growth of any shrub, temperature sensitivity did not differ among individuals. In addition, the June temperature sensitivity of growth series from individual cross‐sections depended on the age of the attached shrub.

    Our results suggest that age contributes to climate sensitivity, likely through modifying internal shrub carbon budgets by changing size and reducing alder's dependence on N‐fixation over time. Older, more sensitive alder may enhance C and N‐cycling while having greater recruitment potential. Linking alder age to climate sensitivity, recruitment and total N‐inputs will enable us to better predict ecosystem carbon and nitrogen cycling in a warmer Arctic.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less